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We examine typicality—a significant phenomenon accompanying human concepts—within 
the framework of formal concept analysis. Our aim is to formalize the notion of typicality 
within this framework and thus provide an operational definition. We review relevant 
aspects and main psychological explanations of typicality, and propose a formalization 
based on a view of typicality propounded in the seminal work by Eleanor Rosch et al. 
We also provide experimental evaluation of our approach and discuss ramifications of our 
findings and topics to be explored in the future.

© 2021 Elsevier Inc. All rights reserved.

1. Aims of our study

Concepts are at the center of human reasoning and are hence the subject of numerous explorations. Among them, 
psychological studies of concepts have a distinguished role. The psychology of concepts provides a number of interesting 
theories and experimental studies of various phenomena involving concepts. These are of interest not only for the domain 
of psychology itself but, naturally, also for other domains concerned with concepts, including numerous formal approaches 
to reasoning and information processing using concepts.

One of the most significant phenomena accompanying human concepts, which is broadly familiar from everyday life, is 
typicality: A sparrow is a typical bird, an ostrich is not; a trout is a typical fish, an eel or a flounder is not.1 Typicality may 
be regarded as a manifestation of a graded structure of concepts, and plays a remarkable role in several cognitive tasks, 
such as categorization and classification, which are crucially important in processing information by humans.

Our aim in this paper is to formalize a view of typicality propounded in the seminal works on typicality and the graded 
structure of concepts by Eleanor Rosch et al. For our purpose, we utilize the framework of formal concept analysis (FCA).2

This framework is naturally suited for our purpose because its fundamental notions, such as that of object, attribute, sharing 
of attributes, as well as other notions, appear as basic in most of the psychological studies of typicality. In a sense, selection 
of FCA represents a choice of a straightforward simple framework that provides formal counterparts to the primitive notions 
used informally by psychologists.

Two particular motivations for our study are as follows. First, formalization of typicality allows us to approach and ex-
plore typicality in precise terms amenable to formal analysis. This is important particularly in view of the fact that in the 
psychological literature, theories of typicality are described rather informally, very often just verbally. Similarly informal are 
reasoning and the conclusions regarding typicality presented in the literature. Formalization of typicality, on the other hand, 
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1 In our cultural context; the role of cultural context is mentioned below.
2 We thus continue our previous effort to examine the basic level of concepts [5–7] within FCA.
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renders an operational definition which lets one realize the various subtleties and possible shortcomings of an informal, ver-
bally described definition of typicality. In addition, it enables one to consider possible relationships to alternative definitions 
and related notions, and thus may generally help examine typicality in a more rigorous manner.3

Secondly, we believe that formalization of typicality is significant for FCA itself. In general, we consider extensions of 
data analytical and information processing methods, such as FCA, by notions coming from the psychology of concepts a 
meaningful task which may significantly enhance these methods. While typicality has as yet not been exploited in FCA, it 
seems a natural mean to extend the structure of formal concepts.

Our paper is meant to make first steps in studying typicality in the framework of FCA. In section 2, we provide an 
overview of typicality from the viewpoint of the psychology of concepts and present selected issues pertaining to typicality. 
Our formalization of typicality within the FCA framework is outlined in section 3. Examples and experiments involving 
typicality are the subject of section 4. Conclusions and a prospect of further topics to explore is outlined in section 5.

2. Psychological accounts of typicality

2.1. Typicality as manifestation of a graded structure of concepts

Until the 1970s, the prevalent paradigm in psychological studies of concepts was represented by the so-called classical 
view.4 According to this view, a concept is determined by a set of yes/no (bivalent, binary) conditions (attributes, features) 
which are necessary and jointly sufficient, i.e. definitory in the following sense: An object is covered by (or, is a member 
of) the concept (or category in terms commonly used in the psychology of concepts) if and only if the object satisfies each 
of these conditions. This view has a long tradition in philosophy and logic and also underlies the notion of a concept in the 
basic setting of formal concept analysis.5

In the mid-1970s, various explorations—most importantly those led by Eleanor Rosch—in the internal structure of con-
cepts revealed fundamental limitations of the classical view. Put briefly, it became apparent that concepts have a graded 
structure: Various phenomena had experimentally been found to be a matter of degree rather than bivalent (yes/no). In 
addition, important phenomena had been observed that were not accounted for by the classical view. Typicality, which is 
discussed in the first findings by Rosch et al. [22–24], represents such a phenomenon. Ever since these first findings, the 
phenomenon continues to be a subject of vivid psychological research; see e.g. [10,27].

The classical view does not account for typicality, at least not directly, which represents a shortcoming of this view. 
Namely, according to the classical view, all members of a category have an equal status with respect to the category. On the 
other hand, people naturally regard some objects more typical of a given category than other objects. Further research has 
shown that people are even capable of assigning degrees of typicality (called also typicality ratings) to objects for a given 
category in a consistent manner.

Note in this connection that another phenomenon, which had been examined in the early 1970s, that involves degrees 
and is not addressed by the classical view is the graded nature of a membership in category itself. That is, an object may 
not just be a member or a non-member of a given category, but rather a member to a certain degree in the sense of 
fuzzy sets.6 While the classical view is constrained to two possible degrees of membership, namely 0 (non-member) and 1
(member), the more general view, which is experimentally confirmed as significantly more appropriate, allows for degrees 
of membership, such as 0.8 representing high but not full membership or 0.5 representing a borderline case.

Basically, there are two possible views to start from in considering typicality. The literature on the psychology of concepts 
does not, unfortunately, make it clear to which of these views a particular study of typicality subscribes; see. e.g. [20]. In 
the first view, membership in a category is bivalent (i.e. classical, yes/no) and typicality represents an additional structure 
of a category. In the second view, membership is graded and possibly even equivalent to (or otherwise strongly correlated 
with) typicality. In our formalization below we assume the former view, i.e. that categories (concepts) are classical and that 
typicality represents an additional structure. Such view is adopted, e.g., in the design of experiments in the seminal paper 
[23].

Note also an important feature of typicality, namely its high cognitive significance; see e.g. [1,20,23]. For one, people 
tend to agree on typicality ratings. Moreover, typicality is reported to predict performance in a variety of cognitive tasks 
including learning of categories (typical objects are learned more quickly), deciding membership in categories (decisions on 
typical objects are more quick), and production of category exemplars (typical exemplars are generated first). Typical items 
are also useful in making inferences about categories and serve as so-called cognitive reference points.

3 This aspect was a significant part of our work on basic level [5–7].
4 A detailed exposition of developments in the psychological theories of concepts is provided in the monograph [20]; see also [18].
5 Note, however, that in the fuzzy logic extension of the basic setting of formal concept analysis, attributes are considered fuzzy (graded) rather than 

bivalent; see e.g. [2,3].
6 Note that Rosch’s studies of graded nature of categories were conducted independently and in about the same time as Zadeh’s studies of fuzzy sets 

[28]. Both Rosch and Zadeh were with UC Berkeley.
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2.2. Explanations of typicality

In their seminal paper [23], Rosch and Mervis put forward a hypothesis of what makes an object typical in a category. 
This hypothesis was confirmed by experiments by the authors [23] and had later been examined by numerous other studies; 
see e.g. the monograph [20], in which typicality occupies a significant part. Rosch and Mervis [23, p. 575] describe their 
hypothesis as follows:

. . . members of a category come to be viewed as prototypical of the category as a whole in proportion to the extent to 
which they bear a family resemblance to (have attributes that overlap those of) other members of the category. Con-
versely, items viewed as most prototypical of one category will be those with least family resemblance to or membership 
in other categories.

The first part referring to resemblance (similarity) to objects of the given concept (category) is intuitively compelling and 
relatively straightforward to formalize. It is this part that we use in our approach. The second part referring to resem-
blance to objects in other concepts is not so straightforward, brings non-trivial problems, which are also reflected in the 
experiments in [23], and we hence do not consider it in what follows.7

In addition, several other possible explanations of typicality of an item have been suggested and tested in later studies, 
including similarity to central tendency (central tendency being e.g. the average of a numerical characteristic of an item), 
closeness to ideals in goal-oriented categories (ideals represent characteristics that items should possess if they are to serve 
the goal associated with a category), frequency of instantiation (i.e. frequency of encounter with the item as a member of 
a given category), and familiarity (i.e. frequency of encounter across all contexts); see e.g. [1,19,20] and also [14]. A more 
recent research emphasizes also the role of context (situation) in which typicality is assessed [27]. The resulting instability of 
typicality resulting from dependence on context even led the authors in [10] to distinguish between the so-called structural 
typicality (representing stability) and functional typicality (representing context-dependence and thus instability).

In spite of several alternative hypotheses, the family resemblance hypothesis of Rosch and Mervis [23] mentioned above 
appears to remain the most simple and most commonly accepted explanation of typicality. It is due to this fact that Rosch 
and Mervis’ explanation forms the basis of our approach to typicality.

3. Formalization of typicality within formal concept analysis

3.1. Preliminaries from formal concept analysis (FCA)

FCA [9,15] starts with its basic notion of a formal context, which is a triplet 〈X, Y , I〉 consisting of non-empty sets X and 
Y , and a binary relation (incidence relation) I between X and Y (that is, I ⊆ X × Y , i.e. I consists of selected pairs 〈x, y〉). 
The sets X and Y are interpreted as the set of objects and the set of (yes/no) attributes, and the fact 〈x, y〉 ∈ I means that 
the object x has the attribute y. An example of a formal context is depicted in Table 5 in section 4: Objects x ∈ X and 
attributes y ∈ Y are represented by table rows and columns, and the incidence relation I by crosses and blanks; for x =
scorpion and y = predator we have 〈x, y〉 ∈ I (scorpion is predator), for x = frog and y = hair we have 〈x, y〉 /∈ I (frog does 
not have hair), etc.

A pair 〈A, B〉 consisting of a set A ⊆ X of objects and a set B ⊆ Y of attributes is called a formal concept in 〈X, Y , I〉 if 
and only if A↑ = B and B↓ = A where

A↑ = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x, y〉 ∈ I}.

Notice that A↑ and B↓ are the set of all attributes common to all objects in A and the set of all objects having all the 
attributes in B , respectively. Geometrically, formal concepts in 〈X, Y , I〉 are maximal rectangular areas (up to a permutation 
of rows and columns) in the table representing 〈X, Y , I〉 that are full of crosses. The notion of a formal concept corresponds 
to the traditional notion of concept as consisting of its extent (objects covered by the concept) and its intent (attributes 
characterizing the concept); the extent of a formal concept 〈A, B〉 is A, the intent is B .

In a given formal context 〈X, Y , I〉, there is, as a rule, a number of formal concepts. The set of all formal concepts in a 
given formal context 〈X, Y , I〉 is denoted by B(X, Y , I), i.e.

B(X, Y , I) = {〈A, B〉 | A↑ = B and B↓ = A},
and is called the concept lattice of 〈X, Y , I〉. Namely, when equipped with a natural subconcept-superconcept hierarchy ≤, 
defined by

7 The problem is with the meaning of “other categories”. We leave this problem for future research. Note, however, that the properties mentioned in the 
first part (i.e. similarity to objects of the given category, which we use) and the second part (small similarity to objects in other categories) were tested 
separately in [23], and that each of these two parts was found significantly correlated with typicality ratings.
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〈A, B〉 ≤ 〈C, D〉 if and only if A ⊆ C (equivalently, if and only if B ⊇ D),

the set B(X, Y , I) indeed becomes a complete lattice, whose structure is described by the basic theorem of concept lattices 
[15].

3.2. Our approach to typicality

As noted above, psychological explorations of typicality and other facets of the graded structure of concepts are consid-
ered a strong argument against the classical view of concepts. Since FCA is rooted in the classical view of concepts, one 
might conclude that using FCA is not appropriate for modeling typicality. In our view, this is not the case. We contend 
that typicality naturally occurs even in concepts with a yes/no membership resulting from yes/no attributes, as in the basic 
setting of FCA. Moreover, the seminal psychological experiments on typicality mentioned above, as well as several other 
studies of typicality in the psychological literature are based on the idea of objects described by yes/no attributes.

Let 〈A, B〉 ∈ B(X, Y , I) be a formal concept in a given formal context 〈X, Y , I〉. In accordance with Rosch and Mervis’ 
view of typicality (section 2.2), we intend to regard an object x as typical for the given concept 〈A, B〉 to the extent to 
which it is similar to the objects in A, i.e. to the objects of this concept. A straightforward way is to assume a function

sim : X × X → [0,1] (1)

assigning to every two objects x1, x2 ∈ X a number sim(x1, x2) ∈ [0, 1] that may be interpreted as a degree to which x1 and 
x2 are similar (we come back to these functions below). Similarity of x to the objects x1 in A, which underlies Rosch and 
Mervis’ view of typicality, may naturally be interpreted as the average similarity of x to all the objects x1 ∈ A. This leads to 
the following definition8:

Definition 1. Given a similarity (1), a degree of typicality of object x ∈ A in a formal concept 〈A, B〉 ∈ B(X, Y , I) with A �= ∅
is defined by

typ(x, 〈A, B〉) =
∑

x1∈A sim(x, x1)

|A| . (2)

Remark 1. (a) Admittedly, our approach is restrictive. One might, for instance, consider formula (2) for x not necessarily 
in A, or consider the notion of typicality of a subconcept, rather than an object, in a given concept. We proceed with our 
definition for simplicity.

(b) Typicality degrees provide additional information about a concept 〈A, B〉. Namely, they reveal a certain graded struc-
ture of the concept 〈A, B〉. Such a structure has a cognitive significance and may be further utilized. Notice that since 
typ(x, 〈A, B〉) ∈ [0, 1] due to sim(X, X) ⊆ [0, 1], the mapping t : A → [0, 1] defined by t(x) = typ(x, 〈A, B〉) may be regarded 
as a fuzzy set [28] of objects typical of 〈A, B〉.

(c) The idea of an element being similar to other elements in a given set has been explored in the literature on clustering 
and machine learning in general; see e.g. [17,29] on typicality in clustering, and the literature on medoids in clustering, e.g. 
[21], and silhouettes in clustering, e.g. [25].

Let us now consider the choice of the similarity function (1). It seems natural to derive the degree sim(x1, x2) to which 
the objects x1 and x2 are similar from the descriptions of these objects in terms of attributes, i.e. from the sets {x1}↑ and 
{x2}↑ (note that {x}↑ is the set of attributes possessed by x). We hence assume that

sim(x1, x2) = simY ({x1}↑, {x2}↑), (3)

where

simY : 2Y × 2Y → [0,1]
is a function assigning to arbitrary subsets B1 and B2 of the set Y of given attributes a degree simY (B1, B2) ∈ [0, 1] that 
may be interpreted as a degree of similarity of B1 and B2. Such functions have been studied in various areas, most notably 
in the field of clustering; see e.g. [13].

Two particular functions serving this purpose, which we use in our experiments, are the well-known Jaccard index [16], 
simJ , and the simple matching coefficient, simSMC, defined by

8 Average similarity is mentioned in some psychological studies; see e.g. [1, p. 630]. Note that we also explored minimum instead of average, as it 
represents the best lower similarity-threshold. Average, nevertheless, yielded more intuitive results. We use [0, 1] for the range (i.e. similarity is scaled), 
but R+ is also a natural option (non-scaled).
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simJ(B1, B2) = |B1 ∩ B2|
|B1 ∪ B2| and (4)

simSMC(B1, B2) = |B1 ∩ B2| + |Y − (B1 ∪ B2)|
|Y | , (5)

respectively. That is, simJ(B1, B2) is the number of attributes that belong to both B1 and B2 divided by the number of all 
attributes that belong to B1 or B2; simSMC(B1, B2) is the number of attributes on which B1 and B2 agree (either y ∈ B1
and y ∈ B2, or y /∈ B1 and y /∈ B2) divided by the number of all attributes. Hence, while simSMC treats both presence and 
non-presence of attributes symmetrically, simJ disregards non-presence. This is the main conceptual difference between simJ
and simSMC.

The choice of the similarity simY is in a sense crucial and, obviously, several other options different from simJ and simSMC
are possible. In this study, we nevertheless refrain from exploiting the variety of possible further similarity functions. Note, 
however, that in the next section, we naturally come to a third similarity, which we consider in this paper.

3.3. Relationship to Rosch and Mervis’s formula for typicality

Formula (2) for typicality derives in a straightforward (and–as we contend–the most direct) way from the verbal descrip-
tion of Rosch and Mervis’s hypothesis quoted in section 2.2. Interestingly, in their experiments to test the hypothesis, Rosch 
and Mervis [23] use a different formula for typicality of an object. Strangely, this formula does not bear a direct connection 
to similarity of objects, which is crucial in the hypothesis. The formula is described in [23] as follows. Given a concept, one 
assigns to every attribute its weight, namely the number of all objects of the concept that possess the attribute. A typicality 
of a given object in the concept is then the sum of the weights of all the attributes possessed by the object.

This definition translates to the FCA framework as follows. For a given 〈A, B〉 ∈ B(X, Y , I) and y ∈ Y , put

w(y, 〈A, B〉) = |{x ∈ A | x ∈ {y}↓}| (weight of attribute y).

Now, according to Rosch and Mervis, the typicality of the object x ∈ A with respect to the concept 〈A, B〉 is defined by

typRM(x, 〈A, B〉) = ∑
y∈{x}↑ w(y, 〈A, B〉).

The following theorem shows that in fact, Rosch and Mervis’s formula for typicality, which is on the first sight of a different 
sort compared to our (2), may actually be regarded as resulting from a particular case of our scheme (2) by a simple scaling.

Theorem 1. For the function simrm(x1, x2) = |{x1}↑∩{x2}↑|
|Y | we have

typRM(x, 〈A, B〉) = |A| · |Y | · typrm(x, 〈A, B〉)
where typrm(x, 〈A, B〉) is determined by simrm according to (2).

Proof. Since

|A| · |Y | · typrm(x, 〈A, B〉) = |A| · |Y | ·
∑

x1∈A simrm(x, x1)

|A|

= |A| · |Y | ·
∑

x1∈A
|{x}↑∩{x1}↑|

|Y |
|A| =

∑

x1∈A

|{x}↑ ∩ {x1}↑|,

we clearly need to verify

typRM(x, 〈A, B〉) =
∑

x1∈A

|{x}↑ ∩ {x1}↑|.

Denoting ||ϕ|| the truth value of ϕ (e.g. ||y ∈ {x1}↑|| = 1 iff y ∈ {x1}↑), we obtain
∑

x1∈A

|{x}↑ ∩ {x1}↑| =
∑

x1∈A

∑

y∈{x}↑
||y ∈ {x1}↑||

=
∑

x1∈A

∑

y∈{x}↑
||x1 ∈ {y}↓|| =

∑

y∈{x}↑

∑

x1∈A

||x1 ∈ {y}↓||

=
∑

y∈{x}↑
|{x1 ∈ A | x1 ∈ {y}↓}| =

∑

y∈{x}↑
w(y, 〈A, B〉) = typRM(x, 〈A, B〉),

completing the proof. �
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Remark 2. (a) For a given formal concept 〈A, B〉 there thus exists a constant c (namely, c = |A| · |Y |) such that Rosch-Mervis 
typicality typRM is obtained as a c-multiple of a particular typicality (namely typrm) obtained from our scheme.

(b) As a consequence, the list of objects sorted by typRM coincides with the list sorted by typrm.

4. Experiments

We performed experiments with data reported in [11] (section 4.1) and the well-known Zoo data [12] (section 4.2). 
Our main goal was to observe whether our formulas for typicality agree with human judgment, that is observe to what 
extent the rankings of objects by typicality degrees (or typicality ratings in terms often used in the psychological literature) 
computed by our formulas agree with the rankings resulting from human judgment, i.e. human assessment of typicality, 
for the above data. While human judgment data are available for the data in [11], we had to obtain the human judgment 
data for the Zoo data by our own questionnaire. Secondly, we attempted to analyze relationships between the formulas for 
typicality, which we provided, by observing agreements of the typicality degrees computed by the formulas. For the purpose 
of observing such agreements, both between our formulas and human judgment and between pairs of our formulas, we 
utilized various rank order correlation coefficients.

4.1. Experiments with Dutch data

Dutch data and the parts used in our experiments
The data used in this section is presented in [11], a study which provides perhaps the most comprehensive data re-

garding common human categories and their numerous characteristics, including typicality ratings. We first provide a brief 
description of the data and describe which part we used; the reader is referred to [11] for details.

The data comprises information on both the so-called natural kind and artifact categories, as these two types of cate-
gories are believed to have distinct properties (such as mental representation) by the psychologists. The data includes 16 
human categories, each of which is represented by a number of selected exemplars (i.e. objects in the sense of FCA). A set 
of exemplars for a given category is to be considered an extent of the category (we come later to whether it actually is an 
extent in the sense of FCA). The categories include 10 natural kind categories9: “fruit” (30 exemplars); “vegetables” (30); 
“professions” (30); “sports” (30); the animal categories “amphibians” (5), “birds” (30), “fish” (23), “insects” (26), “mammals” 
(30), and “reptiles” (22). In addition, they include 6 artifact categories: “clothing” (29 exemplars), “kitchen utensils” (33), 
“musical instruments” (27), “tools” (30), “vehicles” (30), and “weapons” (20). The exemplars are selected to be representative 
of the categories; for instance, the animal categories cover a rather large part of the known animal domain.

The Dutch data also contains information on features (attributes in the sense of FCA). Both objects (exemplars) and at-
tributes (features) were obtained by processes described in [11]. For the obtained objects and attributes, data describing 
which objects have which attributes was also obtained. Consequently, various matrices (called exemplar by feature appli-
cability matrices by the authors) describing which objects have which attributes were obtained. From the FCA viewpoint, 
these particular matrices represent particular formal contexts 〈X, Y , I〉 in a straightforward manner (X and Y are the sets 
of exemplars and features covered by the matrix and I represents which exemplars have which features).

It is to be noted that two ways of obtaining attributes were used in [11]. Respondents were either asked to list attributes 
for a given category (these are called category attributes) or for a given exemplar (exemplar attributes). These two kinds of 
attributes are distinct (for example: category features obtained for the category “fish” overlap with the union of exemplar 
features obtained for the particular exemplars in this category). As a result, one obtains two versions of the applicability 
matrices: exemplar by category-feature matrices, and exemplar by exemplar-feature matrices.

Each applicability matrix had been filled out separately by four participants in the study (i.e. the participants were filling 
out whether objects have attributes). To obtain a single matrix out of these four, we required at least two participants to 
agree. That is, we defined the corresponding formal context 〈X, Y , I〉 as follows:

〈x, y〉 ∈ I iff at least 2 participants claim that x has y

In our study, we utilize four of the formal contexts corresponding to the matrices described in the previous paragraphs. 
These are described by the following table:

dataset objects attributes density

AnimalCategory 129 225 0.32
AnimalExemplar 129 764 0.13
ArtifactCategory 166 301 0.23
ArtifactExemplar 166 1295 0.09

The table describes the numbers of objects and attributes, and the density of the formal context (e.g., 0.32 means that 32% 
of the 129 × 225 entries in the AnimalCategory matrix have value 1).

9 In this list, we use plural in category names, as the authors do; below, we use singular, i.e. “bird” rather than “birds” to be consistent with our previous 
writings.
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Table 1
Typicality ratings for “bird”; AnimalCategory data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

woodpecker 0.920 woodpecker 0.783 owl 0.295 sparrow 19.179
blackbird 0.917 blackbird 0.780 parrot 0.295 blackbird 18.821
magpie 0.916 cuckoo 0.777 falcon 0.293 robin 18.321
cuckoo 0.916 magpie 0.774 duck 0.292 dove 18.143
robin 0.913 robin 0.770 dove 0.291 crow 18.107
swallow 0.911 swallow 0.766 sparrow 0.288 seagull 17.964
crow 0.910 crow 0.763 parakeet 0.287 canary 17.893
peacock 0.908 chickadee 0.762 swallow 0.287 magpie 17.893
chickadee 0.908 sparrow 0.759 cuckoo 0.285 swallow 17.857
seagull 0.907 falcon 0.757 chickadee 0.285 parakeet 17.643
falcon 0.905 seagull 0.755 blackbird 0.285 chickadee 17.107
sparrow 0.905 owl 0.751 seagull 0.283 eagle 16.926
pheasant 0.904 peacock 0.746 crow 0.282 woodpecker 16.429
pelican 0.902 dove 0.742 woodpecker 0.282 heron 16.107
heron 0.902 parrot 0.741 rooster 0.282 cuckoo 16.000
owl 0.901 pelican 0.739 robin 0.281 owl 16.000
stork 0.901 pheasant 0.737 canary 0.278 parrot 15.857
dove 0.898 canary 0.736 magpie 0.278 falcon 15.500
canary 0.898 parakeet 0.735 chicken 0.276 stork 15.393
parrot 0.896 stork 0.732 pelican 0.275 vulture 15.143
parakeet 0.895 heron 0.729 eagle 0.274 pheasant 13.714
chicken 0.893 chicken 0.724 vulture 0.268 swan 12.821
turkey 0.893 duck 0.721 turkey 0.267 duck 12.786
duck 0.886 turkey 0.718 peacock 0.267 pelican 12.571
rooster 0.884 rooster 0.711 stork 0.266 peacock 12.286
swan 0.882 eagle 0.700 ostrich 0.266 turkey 11.679
eagle 0.881 swan 0.696 swan 0.266 chicken 11.571
ostrich 0.879 ostrich 0.689 pheasant 0.263 ostrich 11.214
vulture 0.865 vulture 0.669 heron 0.258 rooster 11.071
penguin 0.861 penguin 0.653 penguin 0.257 penguin 8.643

An important question is whether the 16 categories, around which the Dutch data is developed and which are repre-
sented by sets of exemplars as described above, actually represent formal concepts; that is, whether the sets of exemplars 
actually form extents of formal concepts in the formal contexts obtained from the considered applicability matrices.10 In-
terestingly, most of the 16 categories indeed represent formal concepts. In particular, this is true of the categories “bird,” 
“fish,” and “mammal” which we examine in detail below.11

Obtained degrees of typicality
For each of the three concepts mentioned above, we computed the degrees of typicality typSMC, typJ , and typrm for all 

objects in the extent of the concept. We present the results for the AnimalCategory data; for the AnimalExemplar data, our 
observations are similar.12 The results are shown in Tables 1 (“bird”), 2 (“fish”), and 3 (“mammal”). In addition to the three 
computed typicalities, the tables also display the typicality degrees obtained by humans, which are part of the Dutch data 
and which we denote by typHJ. Note that we keep the values of typHJ as they are stored in the Dutch data: They range 
between 1 and 20 since they are obtained as average degrees assigned by respondents on a twenty-element scale. Each 
table therefore contains four lists of object-typicality pairs, corresponding to the four kinds of typicality (typSMC, typJ , typrm, 
and typHJ), and each list is ordered by degrees of typicality. The typicality data displayed in the three tables is also displayed 
in Figs. 1, 2, and 3.

Thus, for instance, the last two columns of Table 1 display a list of bird exemplars sorted by typicality obtained by human 
judgment along with the typicality degrees: sparrow is the most typical bird by human judgment, followed by blackbird, 
robin, etc. On the other hand, penguin, rooster and ostrich are considered the least typical of the available exemplars. 
Intuitively, this sorted list makes sense. By and large, each of the three other lists of exemplars makes intuitively sense as 
well. One also observes, for the most part, agreement of each of these three lists, which are obtained by our formulas for 
computing typicality, with the list obtained by human judgment: The birds typical by human judgment generally tend to be 
typical according to typSMC, typJ , and typrm, and the same may be said of untypical birds.

10 Note that a given a set A is an extent in a given formal context 〈X, Y , I〉 iff A = A↑↓ , i.e. the test is straightforward.
11 Selection of concepts for a detailed exposition is due to lack of space. Our observations below are representative for what we were able to observe for 

the other concepts and data.
12 Recall that AnimalCategory and AnimalExemplar have the same sets of objects but differ in their sets of attributes. While the three categories represent 

formal concepts in both datasets, the computed typicality degrees are different for the two datasets as a result of the difference in attribute sets, because 
our formulas for typicality depend on the attribute sets.
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Table 2
Typicality ratings for “fish”; AnimalCategory data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

stickleback 0.927 stickleback 0.813 eel 0.291 goldfish 18.893
plaice 0.925 plaice 0.808 salmon 0.289 salmon 18.393
sardine 0.922 sardine 0.804 pike 0.287 cod 18.107
cod 0.921 cod 0.798 stickleback 0.286 trout 17.893
swordfish 0.920 sole 0.797 sardine 0.285 herring 17.071
sole 0.920 carp 0.795 carp 0.284 pike 16.286
pike 0.920 pike 0.795 plaice 0.284 carp 16.000
carp 0.919 trout 0.789 piranha 0.282 plaice 15.962
trout 0.916 salmon 0.789 herring 0.282 eel 15.679
ray 0.915 swordfish 0.788 flatfish 0.282 sardine 15.536
salmon 0.915 herring 0.785 ray 0.280 piranha 15.321
herring 0.915 flatfish 0.783 trout 0.280 sole 15.143
flatfish 0.915 eel 0.780 sole 0.280 stickleback 14.750
eel 0.911 ray 0.779 cod 0.278 swordfish 14.643
anchovy 0.908 anchovy 0.764 anchovy 0.276 ray 14.500
piranha 0.880 piranha 0.708 swordfish 0.275 flatfish 14.321
goldfish 0.878 goldfish 0.687 goldfish 0.259 shark 13.214
squid 0.868 squid 0.661 squid 0.252 anchovy 13.143
shark 0.847 shark 0.624 shark 0.250 squid 10.679
sperm whale 0.840 sperm whale 0.601 sperm whale 0.235 whale 10.429
dolphin 0.812 dolphin 0.561 dolphin 0.231 sperm whale 9.893
whale 0.804 whale 0.552 whale 0.231 orca 9.857
orca 0.803 orca 0.550 orca 0.230 dolphin 9.179

Table 3
Typicality ratings for “mammal”; AnimalCategory data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

zebra 0.917 zebra 0.754 dog 0.265 cat 18.536
llama 0.914 kangaroo 0.747 cat 0.262 dog 18.536
kangaroo 0.914 llama 0.741 monkey 0.261 monkey 17.929
dromedary 0.911 dromedary 0.738 horse 0.259 lion 17.679
deer 0.908 deer 0.737 lion 0.258 cow 17.607
donkey 0.907 giraffe 0.726 squirrel 0.255 horse 17.536
giraffe 0.906 donkey 0.725 mouse 0.255 sheep 17.429
bison 0.898 horse 0.722 tiger 0.253 pig 17.179
squirrel 0.898 squirrel 0.718 rabbit 0.253 tiger 17.071
horse 0.898 bison 0.714 deer 0.251 wolf 17.036
fox 0.896 fox 0.708 wolf 0.249 donkey 16.821
cow 0.896 cow 0.705 fox 0.249 rabbit 16.643
sheep 0.894 monkey 0.702 bison 0.248 deer 16.536
beaver 0.891 lion 0.699 beaver 0.247 elephant 16.250
hamster 0.889 beaver 0.697 elephant 0.245 fox 16.250
elephant 0.888 sheep 0.697 kangaroo 0.245 zebra 16.036
monkey 0.888 elephant 0.691 zebra 0.244 giraffe 15.964
lion 0.887 wolf 0.691 hamster 0.241 mouse 15.679
rhinoceros 0.886 hamster 0.689 dromedary 0.241 rhinoceros 15.143
wolf 0.886 cat 0.683 cow 0.241 polar bear 15.143
cat 0.877 rabbit 0.677 donkey 0.239 bison 15.143
pig 0.877 mouse 0.676 giraffe 0.239 kangaroo 14.750
rabbit 0.877 tiger 0.675 llama 0.238 llama 14.643
mouse 0.876 rhinoceros 0.673 hedgehog 0.237 hippopotamus 14.607
tiger 0.876 dog 0.664 sheep 0.237 hamster 14.571
hedgehog 0.875 hedgehog 0.658 polar bear 0.232 squirrel 14.571
hippopotamus 0.874 pig 0.656 hippopotamus 0.227 dromedary 14.429
polar bear 0.874 polar bear 0.654 pig 0.227 beaver 14.000
dog 0.865 hippopotamus 0.651 rhinoceros 0.227 hedgehog 13.179
bat 0.834 bat 0.579 bat 0.225 bat 10.857

General remarks on analyzing typicality data
Note at this point two important aspects that need to be kept in mind in our examination. One concerns human judg-

ment on typicality and is known from the literature: Even though human judgment scores are sometimes called the ground 
truth, the scores may hardly be regarded as objective. Namely, typicality is subjective to a certain extent as it depends on 
the experience of the respondent, cultural background and other factors. Secondly, since the computed typicalities rely on 
the available attributes, the attributes need to describe the objects well: they need to describe the domain of inquiry in a 
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Fig. 1. Typicality ratings for “bird” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; AnimalCategory data.

Fig. 2. Typicality ratings for “fish” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; AnimalCategory data.

sufficiently informative and balanced way.13 That is, there need to be enough attributes, describing relevant aspects of the 
domain, and the attributes must not be redundant (otherwise, the aspect described by redundant attributes would obtain 
an inappropriately large weight). It is for these reasons that one may hardly expect complete or nearly complete agreement 
of the computed typicalities with human judgment. As we demonstrate below, a closer examination nevertheless reveals 
reasonable agreements.

Three methods for analyzing typicality data
To assess the agreements of the typicalities and the sorted lists based on them in a more precise manner, we used 

three methods. First, we used the well-known Kendall tau rank correlation coefficients τb . Kendall tau measures ordinal 

13 In the context of examination of basic level, this is also observed in [6,7].
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Fig. 3. Typicality ratings for “mammal” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; AnimalCategory data.

association between two quantities, i.e. between two typicalities in our case. In particular, its value measures to what 
extent the ordering of exemplars in one list agrees with the ordering of exemplars in the other list. The coefficient ranges 
from 1 (same ordering) to −1 (inverse, i.e. opposite ordering). We used τb to account for ties in typicality values and used 
its implementation in a Python library [26].

Secondly, we used the γ̃ rank correlation coefficient of [8] (called the robust rank correlation coefficient by the authors). 
Namely, the Kendall tau only takes into account the orderings of exemplars and disregards the typicality degrees on which 
the ordering is based. One may object to this as follows. Consider three lists, each consisting of two objects x1 and x2, along 
with their typicalities, say

l1 = 〈〈x1,0.85〉, 〈x2,0.1〉〉,
l2 = 〈〈x1,0.85〉, 〈x2,0.8〉〉, and

l3 = 〈〈x2,0.9〉, 〈x1,0.8〉〉.
The Kendall τb of l1 and l3 is −1 (opposite ordering), which is the same as τb of l2 and l3 (opposite ordering as well), 
since only the orderings matter. However, since we naturally also take the typicality degrees into account, l2 and l3 are 
much better correlated (since the typicality degrees are very close) than l1 and l3. The γ̃ coefficient resolves this by taking 
closeness of degrees into account. In particular, we set the parameter r, which controls what the method considers as close 
values of typicality, to r = 0.2.

Thirdly, we employed the idea put forward in our previous study [7] to alleviate the strictness of rank correlation 
consisting in basically looking solely at agreement of two compared orderings of objects. One might argue that rather than 
to examine agreement in ordering, it is more interesting to examine whether the set of the top r objects (i.e., r most typical 
objects) in one list is similar to the set of top r objects in the other list for various values of r. For a given typicality 
assignment M (e.g. M = typJ), we denote the set of the top r objects in the list corresponding to M as

TopM
r .

For this, we assume that (a) if the (r + 1)-st, . . . , (r + k)-th objects are tied with the r-th one, i.e. have the same value of 
typicality, we add these k objects to TopM

r ; (b) we do not include objects with typicality equal to 0. Now, given typicality 
assignments M and N, we are interested in whether and to what extent are the sets TopM

r and TopN
r similar. For this purpose, 

we proceed as follows. For objects x1 and x2, we denote by s(x1, x2) a suitable defined similarity degree (a number in [0, 1]
in our case).

Below, we use

s(x1, x2) = simJ({x1}↑, {x2}↑),

i.e. s(x1, x2) equals the Jaccard index of the sets {x1}↑ and {x2}↑ of attributes for objects x1 and x2, respectively; cf. (4).
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Table 4
Correlations of typicalities; AnimalCategory and AnimalExemplar data.

dataset concept τb correlation γ̃ correlation

A
ni

m
al

Ca
te

go
ry

bird

typJ typrm typHJ typJ typrm typHJ

typSMC 0.862 0.196 0.445 typSMC 0.978 0.426 0.634
typJ 0.334 0.5 typJ 0.601 0.691
typrm 0.319 typrm 0.496

fish

typJ typrm typHJ typJ typrm typHJ

typSMC 0.919 0.531 0.412 typSMC 0.999 0.932 0.776
typJ 0.581 0.462 typJ 0.93 0.758
typrm 0.47 typrm 0.784

mammal

typJ typrm typHJ typJ typrm typHJ

typSMC 0.871 0.014 -0.053 typSMC 0.981 0.042 -0.005
typJ 0.133 0.002 typJ 0.28 0.115
typrm 0.413 typrm 0.547

A
ni

m
al

Ex
em

pl
ar

bird

typJ typrm typHJ typJ typrm typHJ

typSMC 0.839 0.269 0.454 typSMC 0.968 0.398 0.652
typJ 0.43 0.56 typJ 0.61 0.784
typrm 0.505 typrm 0.717

fish

typJ typrm typHJ typJ typrm typHJ

typSMC 0.927 0.428 0.333 typSMC 0.995 0.736 0.615
typJ 0.47 0.32 typJ 0.749 0.553
typrm 0.249 typrm 0.259

mammal

typJ typrm typHJ typJ typrm typHJ

typSMC 0.582 -0.241 -0.345 typSMC 0.856 -0.449 -0.472
typJ 0.177 -0.002 typJ 0.274 -0.025
typrm 0.595 typrm 0.729

Finally, for two typicality assignments, M and N, and a given r = 1, 2, 3, . . . , we define

S(TopM
r ,TopN

r ) = min(IMN, INM)

where

IMN =
∑

x1∈TopM
r

maxx2∈TopN
r

s(x1, x2)

|TopM
r |

and, symmetrically,

INM =
∑

x2∈TopN
r

maxx1∈TopM
r

s(x1, x2)

|TopN
r | .

According to basic rules of fuzzy logic, S(TopM
r , TopN

r ) may naturally be interpreted as the truth degree of the proposition 
“for most objects in TopM

r there is a similar object in TopN
r and vice versa.” Due to this interpretation and since S is actually 

a reflexive and symmetric fuzzy relation [3,28], S is a good candidate for measuring similarity of sets of objects. High values 
of S indicate high similarity and S(TopM

r , TopN
r ) = 1 takes place if and only if TopM

r = TopN
r .

Results of analyses
Consider first the rank correlations τb and γ̃ , which are shown for the concepts “bird,” “fish,” and “mammal” in Table 4. 

The table presents, both for the AnimalCategory and AnimalExemplar data, and for the three concepts in this data all the six 
correlation coefficients τb and six correlation coefficients γ̃ for the four observed typicalities typSMC, typJ , typrm, and typHJ.

Let us first examine the τb correlations of the three computed typicalities with human judgment. Note first that according 
to a commonly accepted interpretation, the values of τb may be interpreted as follows: τb ≥ 0.3, 0.2 ≤ τb < 0.3, 0.1 ≤ τb <

0.2, and 0.0 ≤ τb < 0.1 indicate strong, moderate, weak and very weak correlation, respectively (analogously for negative 
values). All the computed typicalities, typSMC, typJ , typrm display a strong correlation with human judgment in virtually all 
cases except for the concept “mammal”. For this concept, only typrm exhibits a strong correlation. We only have a partial 
explanation for this. Namely, we believe that “mammal” is a somewhat problematic concept as regards human judgment 
of typicality (we observed this when collecting human rankings for “mammal” in the Zoo data; see the next section); we 
encountered similar difficulties with some other concepts, e.g. “kitchen utensils” (what is a typical kitchen utensil?). Why 
some concepts are problematic in this sense is a question that should be explored in the future, possibly with the help of 
psychologists.

Next, let us examine mutual correlations of the three computed typicalities. The data indicates a very strong correlation 
between typSMC and typJ in most cases. Furthermore, we see significantly less strong correlations between typSMC and typrm, 
between typJ and typrm; yet these correlations range from moderate to strong in most cases, except for the above-discussed 
“mammal”.
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Fig. 4. Similarity S of top r typical objects; concept “bird” in AnimalCategory data. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Similar pattern may be observed for the γ̃ correlations. Since we observed by and large the same behavior for all the 
data and concepts we examined, including the Zoo data presented in the next section, the correlation analysis suggests as 
interesting the problem to analyze, both experimentally and theoretically, the relationships of the three computed typicali-
ties and, in particular, to focus on why typrm seems to perform differently from the two rather correlated ones.

Let us next consider our third method of comparison. The mutual similarities of the sets of top r typical objects for 
the AnimalCategory and the AnimalExemplar data for our three examined concepts are shown in Figs. 4–9. Each figure 
displays six graphs representing the six mutual similarities S = S(TopM

r , TopN
r ) of the sets of top r typical objects according 

to typicality M and typicality N (vertical axis), for increasing r = 1, 2, . . . (horizontal axis). The graphs reveal a similar 
pattern of relationships we observed with the correlations. For instance, in Fig. 4, the blue graph labeled SMC-J representing 
the similarities for M = typSMC and N = typJ shows a high similarity of the sets of top r typSMC-typical and top r typJ-typical 
birds, which confirms—from a different perspective—the very strong rank correlations of these two typicalities observed 
above. The two lines, one for M = typSMC and N = typHJ, the other for M = typJ and N = typHJ, which also attain high values 
even for small r confirm strong correlations of these two pairs of typicalities observed above. Naturally, the similarities 
increase with increasing r which needs to be taken into account when interpreting the graphs.

4.2. Experiments with Zoo data

Zoo data
Zoo is a commonly known dataset [12] and its concepts are mostly well interpretable. It describes 101 animals (objects) 

by their 17 attributes and has the density of 0.36. We removed the somewhat disputable object “girl” from the data; we 
renamed one of the two objects denoted “frog” to “frog venomous.” All of the attributes are yes/no attributes except for the 
attribute describing the number of legs, which we nominally scaled, and an attribute determining the type of animal, which 
we removed. The scaled data is presented in Table 5 (to save space, objects with the same attributes are put on the same 
row).

The Zoo data (i.e. the formal context corresponding to the data) contains several formal concepts, among them three 
concepts that may be interpreted as “bird,” “fish,” and “mammal”. Since concepts with the same interpretation (in different 
data, however, and thus represented by different sets of objects and attributes) were used in the previous section, we 
examine typicalities for these concepts.

To be able to perform similar analyses to those we described the previous section, we first obtained human typical-
ity ratings for the objects of the three concepts by means of a questionnaire; see [4] for the data and appendix for the 
questionnaire. Since the obtained data may be useful for further studies, we describe it to a certain detail. Altogether, 242
respondents participated in the survey. We first split the respondents in four groups (students at Palacky University Olo-
mouc, our coworkers, relatives, and others), since we assumed possibly different reliability of these groups. However, as a 
correlation analysis revealed high correlations between the average ratings in these groups (Kendall τb always higher than 
0.6), we merged the groups into a single group for which we computed average typicality ratings. Note also that approx-
imately 56% (136) women and 44% (106) men were among the participants. The median, minimum and maximum age of 
participants was 23, 17 and 81. The three concepts along with the obtained human judgment of typicality and the three 
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Fig. 5. Similarity S of top r typical objects; concept “fish” in AnimalCategory data.

Fig. 6. Similarity S of top r typical objects; concept “mammal” in AnimalCategory data.

computed typicality ratings are shown in Tables 6, 7, and 8, respectively, in the same manner as with the Dutch data. As in 
the previous section, the typicality data is also displayed in Figs. 10, 11, and 12.

Results of analyses
The correlations of the typicalities for the three concepts are shown in Table 9. The mutual similarities of the set of top 

r objects by the observed typicalities are displayed in Figs. 13, 14, and 15.
Basically, a similar pattern as for the Dutch data may be observed with the following differences. First, correlations of 

the computed typicalities to human judgment are generally somewhat smaller, which is due to the fact that the attributes 
in the Zoo data are considerably less informative compared to the attributes in Dutch data (several animals have the same 
attributes in the Zoo data but, at the same time, are rather different as regards typicality). This illustrates the need of infor-
mative attributes for the computed typicalities to work reasonably well, as mentioned above. In addition, typrm, which again 
behaves somewhat differently compared to the strongly correlated typSMC and typJ , achieves smaller correlation with hu-
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Fig. 7. Similarity S of top r typical objects; concept “bird” in AnimalExemplar data.

Fig. 8. Similarity S of top r typical objects; concept “fish” in AnimalExemplar data.

man judgment compared to Dutch data. This again calls for a closer examination of the relationship between the computed 
typicalities.

Finally, let us mention an instructive observation regarding the concept “fish.” Here, carp appears to be a problematic 
exemplar. While most of our respondents consider it the most typical fish, it is considered atypical according to our formu-
las. The reason is, on the one hand, that the presence of the attribute domestic and absence of predator make carp atypical 
according to the typicality formulas. On the other hand, the perception of carp by respondents is influenced by other fac-
tors, including cultural background, which—as in this case—may be considerably more significant for human judgment than 
the actual attributes present in the data when it comes to determination of typicality. This phenomenon is discussed in 
the literature [20] and calls for a closer examination from a general perspective. Note also that the presence of this single 
problematic exemplar makes the correlations of the computed typicalities with human judgment very weak. When carp 
is removed from the extent of the concept “fish” (in which case the set of objects no longer forms an extent of a formal 
concept), the rank correlations with human judgment become considerably stronger; see the correlations in the part “fish 
(without carp)”.
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Fig. 9. Similarity S of top r typical objects; concept “mammal” in AnimalExemplar data.

Fig. 10. Typicality ratings for “bird” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; Zoo data.

5. Conclusions and further topics

This paper is intended to make first steps in studying and exploiting typicality within a more formalized setting com-
pared to what is common in the literature on the psychology of concepts. The basic aim is to enable a more precise analysis 
of typicality, both experimental and theoretical.

We proposed a formal definition of typicality, which translates to a general scheme for a formula to compute typicality 
of objects of a given concept in a given data consisting of objects, attributes and an incidence relation between objects 
and attributes. Our scheme is based on a basic psychological view of typicality due to Rosch and Mervis. We considered 
three typicality functions resulting from the general scheme, namely typSMC, typJ , and typrm, the last of which was proved 
equivalent to a function actually proposed by Rosch and Mervis. Experiments performed with the Dutch and the Zoo data 
revealed that for most concepts in this data for which human judgment on typicality is available, there is a strong agreement 
between the computed typicalities and human judgment. This finding was confirmed by three kinds of analyses. We also 
observed a very strong correlation of the functions typSMC and typJ , and a considerably weaker correlation of these functions 
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Table 5
Scaled Zoo data.
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scorpion × × × × ×
seasnake × × × × × × ×
dolphin, porpoise × × × × × × × × × ×
flea, termite × × ×
slug, worm × × ×
tortoise × × × × × ×
clam × × ×
tuatara × × × × × × ×
slowworm × × × × × × ×
pitviper × × × × × × × ×
haddock, seahorse, sole × × × × × × ×
carp × × × × × × × ×
toad × × × × × ×
crayfish, lobster × × × ×
starfish × × × ×
crab × × × ×
octopus × × × × ×
seawasp × × × × ×
bass, catfish, chub, herring, piranha × × × × × × × ×
dogfish, pike, tuna × × × × × × × × ×
stingray × × × × × × × × × ×
frog × × × × × × ×
newt × × × × × × × ×
frog venomous × × × × × × × ×
gnat × × × ×
ladybird × × × × ×
ostrich × × × × × × ×
kiwi × × × × × × ×
rhea × × × × × × × ×
penguin × × × × × × × × ×
lark, pheasant, sparrow, wren × × × × × × ×
flamingo × × × × × × × ×
chicken, dove, parakeet × × × × × × × ×
crow, hawk × × × × × × × ×
vulture × × × × × × × × ×
duck × × × × × × × ×
swan × × × × × × × × ×
gull, skimmer, skua × × × × × × × × ×
gorilla × × × × × × ×
cavy × × × × × × ×
hare, vole × × × × × × ×
squirrel × × × × × × ×
antelope, buffalo, deer, elephant, giraffe, oryx × × × × × × × ×
wallaby × × × × × × × ×
hamster × × × × × × × ×
calf, goat, pony, reindeer × × × × × × × × ×
aardvark, bear × × × × × × × ×
mole, opossum × × × × × × × ×
pussycat × × × × × × × × × ×
mink × × × × × × × × × ×
seal × × × × × × × × × ×
sealion × × × × × × × × × × ×
fruitbat, vampire × × × × × × × ×
housefly, moth × × × × ×
wasp × × × × × ×
honeybee × × × × × × ×
platypus × × × × × × × × × ×
boar, cheetah, leopard, lion, lynx, mongoose × × × × × × × × ×
polecat, puma, raccoon, wolf × × × × × × × × ×

with typrm, which implies a need for a further detailed analysis of the proposed typicality functions. We also pointed out 
problems to consider from a psychological viewpoint which are relevant for evaluation of formal definitions of typicality.

Major topics to be explored in the future are the following:
R. Belohlavek and T. Mikula International Journal of Approximate Reasoning 142 (2022) 349–369
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Table 6
Typicality ratings for “bird”; Zoo data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

wren 0.933 wren 0.839 vulture 0.360 sparrow 4.751
pheasant 0.933 pheasant 0.839 gull 0.360 crow 4.696
sparrow 0.933 sparrow 0.839 skua 0.360 dove 4.573
lark 0.933 lark 0.839 skimmer 0.360 gull 4.338
hawk 0.929 hawk 0.833 swan 0.352 parakeet 4.295
crow 0.929 crow 0.833 hawk 0.345 duck 4.233
duck 0.914 duck 0.803 crow 0.345 lark 4.233
flamingo 0.914 flamingo 0.803 duck 0.338 hawk 4.058
vulture 0.910 gull 0.803 flamingo 0.338 swan 4.054
gull 0.910 skua 0.803 penguin 0.336 chicken 3.959
skua 0.910 skimmer 0.803 chicken 0.331 pheasant 3.747
skimmer 0.910 vulture 0.801 parakeet 0.331 vulture 3.734
chicken 0.900 chicken 0.779 dove 0.331 flamingo 3.393
kiwi 0.900 dove 0.779 pheasant 0.324 wren 3.393
dove 0.900 parakeet 0.779 lark 0.324 ostrich 3.104
parakeet 0.900 swan 0.773 sparrow 0.324 penguin 2.693
swan 0.895 kiwi 0.760 wren 0.324 kiwi 2.554
ostrich 0.886 rhea 0.736 rhea 0.321 rhea 2.394
rhea 0.881 ostrich 0.732 kiwi 0.307 skimmer 2.296
penguin 0.862 penguin 0.714 ostrich 0.300 skua 1.970

Table 7
Typicality ratings for “fish”; Zoo data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

bass 0.963 bass 0.913 stingray 0.385 carp 4.860
catfish 0.963 catfish 0.913 dogfish 0.381 pike 4.711
chub 0.963 chub 0.913 pike 0.381 catfish 4.513
herring 0.963 herring 0.913 tuna 0.381 haddock 4.430
piranha 0.963 piranha 0.913 bass 0.366 bass 4.429
dogfish 0.945 dogfish 0.875 catfish 0.366 tuna 4.418
haddock 0.945 pike 0.875 chub 0.366 piranha 4.054
pike 0.945 tuna 0.875 herring 0.366 herring 4.018
seahorse 0.945 haddock 0.868 piranha 0.366 dogfish 3.104
sole 0.945 seahorse 0.868 carp 0.337 chub 2.992
tuna 0.945 sole 0.868 haddock 0.333 stingray 2.948
carp 0.905 stingray 0.803 seahorse 0.333 seahorse 2.242
stingray 0.905 carp 0.788 sole 0.333 sole 2.042

Fig. 11. Typicality ratings for “fish” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; Zoo data.
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Table 8
Typicality ratings for “mammal”; Zoo data.

typSMC order typSMC typJ order typJ typrm order typrm typHJ order typHJ

wolf 0.912 wolf 0.822 pussycat 0.383 pussycat 4.714
cheetah 0.912 cheetah 0.822 mink 0.382 calf 4.636
lynx 0.912 lynx 0.822 leopard 0.375 goat 4.521
lion 0.912 mongoose 0.822 raccoon 0.375 bear 4.438
leopard 0.912 polecat 0.822 puma 0.375 gorilla 4.423
polecat 0.912 leopard 0.822 polecat 0.375 wolf 4.397
puma 0.912 lion 0.822 mongoose 0.375 hare 4.328
raccoon 0.912 puma 0.822 lynx 0.375 lion 4.278
boar 0.912 boar 0.822 lion 0.375 deer 4.269
mongoose 0.912 raccoon 0.822 wolf 0.375 pony 4.088
deer 0.910 buffalo 0.810 boar 0.375 boar 4.059
elephant 0.910 elephant 0.810 cheetah 0.375 cheetah 4.033
giraffe 0.910 oryx 0.810 calf 0.358 elephant 4.021
oryx 0.910 giraffe 0.810 goat 0.358 lynx 3.967
buffalo 0.910 antelope 0.810 reindeer 0.358 giraffe 3.942
antelope 0.910 deer 0.810 pony 0.358 leopard 3.934
opossum 0.886 pussycat 0.774 sealion 0.357 squirrel 3.908
mole 0.886 mink 0.765 elephant 0.350 puma 3.900
hare 0.883 pony 0.762 giraffe 0.350 hamster 3.892
vole 0.883 goat 0.762 buffalo 0.350 cavy 3.863
pussycat 0.881 reindeer 0.762 deer 0.350 reindeer 3.801
pony 0.879 calf 0.762 antelope 0.350 antelope 3.791
reindeer 0.879 mole 0.760 oryx 0.350 buffalo 3.770
mink 0.879 opossum 0.760 mole 0.338 wallaby 3.628
goat 0.879 hare 0.746 opossum 0.338 raccoon 3.619
calf 0.879 vole 0.746 platypus 0.337 vole 3.608
bear 0.876 bear 0.741 bear 0.333 polecat 3.404
aardvark 0.876 aardvark 0.741 aardvark 0.333 mink 3.311
hamster 0.852 hamster 0.703 hamster 0.321 mole 3.302
wallaby 0.850 wallaby 0.690 wallaby 0.320 dolphin 3.186
squirrel 0.824 squirrel 0.631 hare 0.313 opossum 3.172
cavy 0.817 sealion 0.622 vole 0.313 oryx 3.016
gorilla 0.814 cavy 0.621 seal 0.312 seal 2.917
platypus 0.788 platypus 0.620 porpoise 0.308 aardvark 2.899
fruitbat 0.781 gorilla 0.610 dolphin 0.308 sealion 2.837
sealion 0.781 fruitbat 0.581 fruitbat 0.286 fruitbat 2.474
vampire 0.781 vampire 0.581 vampire 0.286 mongoose 2.438
seal 0.738 seal 0.549 squirrel 0.283 porpoise 2.425
porpoise 0.731 porpoise 0.540 cavy 0.280 vampire 2.242
dolphin 0.731 dolphin 0.540 gorilla 0.279 platypus 2.230

Fig. 12. Typicality ratings for “mammal” with objects ordered by values of typSMC and the values of typHJ rescaled to [0,1]; Zoo data.
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Table 9
Correlations of typicalities; Zoo data.

dataset concept τb correlation γ̃ correlation

Zo
o

bird

typJ typrm typHJ typJ typrm typHJ

typSMC 0.948 0.012 0.267 typSMC 0.995 0.073 0.45
typJ 0.063 0.264 typJ 0.229 0.468
typrm 0.044 typrm 0.057

fish

typJ typrm typHJ typJ typrm typHJ

typSMC 0.916 -0.106 0.0 typSMC 1.0 0.088 -0.059
typJ 0.065 0.058 typJ 0.273 -0.074
typrm 0.029 typrm 0.132

fish
(without 

carp)

typJ typrm typHJ typJ typrm typHJ

typSMC 0.906 -0.243 0.211 typSMC 1.0 -0.235 0.423
typJ -0.04 0.279 typJ 0.081 0.418
typrm 0.139 typrm 0.402

mammal

typJ typrm typHJ typJ typrm typHJ

typSMC 0.904 0.599 0.238 typSMC 0.995 0.831 0.556
typJ 0.695 0.27 typJ 0.873 0.482
typrm 0.233 typrm 0.296

Fig. 13. Similarity S of top r typical objects; concept “bird” in Zoo data.

• Crucial for performing experimental evaluation of formal approaches to typicality and surrounding phenomena is avail-
ability of quality data that includes data describing human judgment. Dutch data seems to be the most comprehensive 
available data for this purpose. Obtaining such data and making the data publicly available appears to be an important 
goal.

• Our experience with obtaining human judgment of typicality suggests that data describing human judgment should not 
be taken as “ground truth” (to use a term often mentioned in the psychological literature), for which a perfect fit is 
required with a given formula for computing typicality. Namely, the data on human judgment may have its own issues 
some of which are mentioned above. Rather than seeking a perfect fit, an evaluation of a proposed formalization of 
typicality needs to be performed with caution. This issue seems to point out an important methodological question 
which involves both psychological and mathematical aspects.

• As mentioned above, our experiments suggest that it is important to analyze, experimentally and theoretically, further 
relationships between the three proposed typicality functions, as well as to explore further instances of our general 
scheme for typicality formulas. In particular, explorations of further similarity functions is needed. As an example, we 
performed experiments with similarity functions which disregard attributes from the intent of the concept for which 
typicality is evaluated; this approach seems to have some advantages over the three similarity functions described 
above, such as better distinction between typical and atypical objects.

• Formalization of other existing psychological views of typicality, such as those mentioned in section 2.2, clearly repre-
sents a related, important goal. This includes the possibility to take into account the second part of Rosch and Mervis 
view of typicality, mentioned in section 2.2, which regards similarity to objects in other categories. More radical depar-
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Fig. 14. Similarity S of top r typical objects; concept “fish” in Zoo data.

Fig. 15. Similarity S of top r typical objects; concept “mammal” in Zoo data.

tures from our present approach would take dependence of typicality on context into account (in a general sense of the 
notion of context), as suggested, e.g. in [27] and [10].

• In addition to typicality of objects, typicality of attributes may be explored. At the first sight, this seems just a dual case 
of typicality of objects. From a psychological point of view, however, typicality of attributes has a rather different role; 
see e.g. [20]. Methods to determine typicality of attributes shall thus be explored.

• Due to considerable cognitive significance of typicality, it seems natural to exploit typicality in machine learning and 
data analysis and thus extend the existing attempts mentioned in section 3.2.
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Appendix

Instructions of the questionnaire we used to collect the typicality ratings for the Zoo data (the original questionnaire was 
in Czech):

Hello!
By filling out this questionnaire you contribute to research in the psychology of concepts at the Department of Computer Science, 
Palacky University Olomouc. The questionnaire takes cca 10 minutes.
You will be asked to assess typicality of animals for three categories (concepts), namely bird, mammal, and fish. Each category shall 
be assessed on a separate page.
For a given category (e.g. bird), you will see a list of particular animals (birds) of this category. Read the whole list first. Then select 
for each animal a value in the scale 1 to 5 which describes the extent to which the animal is typical of the category (1 = least typical, 
5 = most typical). If you consider it necessary, when filling out the values, go back and change the previously filled values. If you do 
not know the particular animal, do not select any value (go to the next animal).
When filling out the questionnaire, do not search for additional information (e.g. pictures). Do not spend much time when assigning 
a typicality value (cca seconds). Do not forget to send out the filled questionnaire. Fill the questionnaire just once.
After sending out your questionnaire, you will be able to see responses of other respondents.
Do not hesitate to contact us if you have questions. Thank you for filling out the questionnaire.
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